Tube versus solid state: The truth behind tube distortion

Last edited: Nov. 9, 2018
Published: Nov. 10, 2016

Tube guitar amplifiers are surrounded by a huge mystery even nowadays. Many guitarists swear by the natural warmth and tone of tube guitar amplifiers. Is there something "magical" in tube amps that cannot be emulated by solid state technology?

Is there a right approach to understand guitar amplifiers? - difference between tube and solid state guitar amplifiers

Why is it so hard to understand guitar amplifiers and vacuum tube distortion for most people? Because the most common approach (which is based on harmonic distortion tests mainly) is wrong (or at least not complete). Without the right approach there is no right answer and as in the Indiana Jones movie, they're just digging in the wrong place.

If a transistor amplifier sounds awful then it is always blamed to the transistors. But the truth is that the awful sound of a transistor amplifier is caused by the bad circuit design (mainly by the bad filters) and not the components themselves.

In this article I will not write down the basic and obvious facts (e.g. solid state amplifiers use transistors for signal gain, while tube amps use tubes (or valves), solid-state amplifiers can be smaller, lighter and less expensive, vacuum tubes have vacuum inside...)

Brief historical overview

Tube amplifiers came about long before the solid states did. In the golden years of Rock N' Roll guitar players had no too much choice: tube amp or no amp. Later, in the early 70's solid state guitar amplifiers appeared, but these first attempts sounded too "cold" or lifeless (one good exception is the Marshall Lead 12). This gave the solid state guitar amps a bad reputation.

three basic types of electronic amplifying devices with the year of invention or patent. Tube, transistor, operational amplifier (integrated circuit).

In the 80's and 90's lot of "solid state emulating tubes" type circuit were born (and patented). These can be divided into two main groups: one group of circuits that emulates the asymmetrical clipping of tube stages and the other group of circuits that emulates the power amplifier frequency response with speaker load. An example of the latter is the current feedback in the power amplifier which is used nearly in lot of solid state guitar amplifiers nowadays (Peavey TransTube series, Marshall MGs and AVTs, Crate amplifiers, Laney TFX/LV/LX series).

ADDED (09-11-2018): While the main interests of patents and academic research are how to model vacuum tubes in general, the real goal is to capture the tone of certain guitar amplifiers. This approach is more convincing than any kind of dry academic research.

Here are some remarkable analog amp modelers from the past and from the present (some of them are out of production):

To make it clear, despite its name the Tube Screamer pedal and its clones (Boss SD-1, Fulltone Fulldrive etc...) have nothing to do with tube emulation. Tube Screamer was designed for replacing transistor based treble boosters and not for tube amp emulation.

About amplifier blind tests - is it possible comparing technologies by this way?

The YouTube is flooded with all types of amplifier tests. But can we create a general judgment by those videos? What is the point to compare a 10 Watt practice combo (which probably has a crappy 8" speaker) with a 10 Watt all tube amp (probably equipped with a higher value 10" speaker)? We just get the wrong conclusion, if we are not aware of the full signal chain or we don't have a good conceptual model. It's possible to compare two different guitar combos with their built in speakers or it's possible to use one cabinet for the demonstration. Different methods may lead to different conclusions.

Of course, we can compare different types, brands of guitar amplifiers, but we can't create a general judgment about the technologies. Does it make sense to compare a Fender Blues Junior (an all tube amp) with a Marshall AVT100 (solid state amp with some tube emulation) or with any other solid state amp? They sound different, but this is not just due to the technology of course. These tests don't prove anything. Fender Blues Junior and a Marshall AVT100 sound different, but a Marshall AVT100 and a Marshall JCM800 2203 sound different too. These types of comparisons are misleading.

Usually the devil is in the details. E.g. Peavey Bandits (TransTube series) have input impedance about 250 kOhm, which is much lower than the 'standard' 1 MOhm, and their clean sound is not so bright. If we compare the clean sound of a Bandit with a tube amp then we might think that transistor amps have a darker sound (the remedy to the low input impedance is to turn down the volume on the guitar to 3-4, or use a clean booster..., or fix it). The other important factor is the speaker. The speaker has a great effect on the tone and cheaper amps don't have speakers as good as more expensive amps have. Comparing a solid state amp equipped with a low budget speaker with a tube amp equipped with a high quality Celestion V30 or G12-M is again nonsense.

When amp blind tests are valid? For example, when someone compares a model of a modeling amplifier (or multi effect) to the original.

There is another common myth when people compare solid state amplifiers with tube guitar amplifiers. Everyone knows that vintage tube amplifiers have to be played at high volume to get power amp distortion. They have to be cranked to get their specific tone (Fender Tweed Deluxe, Fender Bassman, non master volume Marshalls). The power section of solid state amps designed to be stay as clean as possible but it doesn't mean that they cannot be cranked (originally tube guitar amps were designed to amplify the guitar sound without distortion too). In solid state amps the power amp stage starts to distort when the volume is turned up to 8 while a tube amp starts to distort around 3-4. This power amp distortion can give a sweeter tone to a solid state amplifier too. So this is not specific to tube amplifiers.

Myths associated with vacuum tubes and tube distortion

These are the most widespread myths associated with tube amps and tube distortion:

And here are the facts.

Vacuum tubes are not slower than transistors. In fact, some old germanium transistors are really slow devices and they are slower than tubes (e.g. AC128). On the other hand it does not make much sense to talk about the frequency response ("bandwidth") of an electronic component because the frequency response depends on the circuit (or at least on the actual stage) and not just on the component itself.

And the same rule applies to the distortion: an amplification stage's distortion depends on the whole stage and not just on the type of the components. Most important factor is the amount of feedback. Because global feedback is generally much larger in solid state power amplifiers and in operational amplifier stages than in tube stages they clip the signal sharper. But this is caused by the feedback only and not the components themselves. It doesn't make sense to talk about "tube type distortion" or "transistor type distortion", because they can be formed in a variety of ways. Only crossover distortion is trickier, but not impossible to emulate.

Marshall JMP 1987 power amp distortion, no phase inverter distortion
Marshall JMP 1987 power amp distortion - the signal is hard clipped
(power tube distortion only, no phase inverter distortion)

But why do push-pull tube amplifiers clip the signal hard and not softly, even though they have very little amount of negative feedback? The answer to this question is that vacuum tubes may have three different types of distortion (grid clipping, saturation, cutoff) and in power tubes (in a push-pull arrangement) grid clipping and saturation happen simultaneously. Both sides of the signal are soft clipped at the anodes of the power tubes (this is the power tube saturation) and at the inputs of the power tubes (grid clipping). They have diode-like soft clipping characteristics separately, but their combined effect added together and what we get is hard clipping (plus some crossover distortion, see figure above).

This is true for all famous vintage guitar amplifiers, such as Marshall Super Lead 100, Fender Tweed Bassman and Vox AC30. Power stages of these amps clip the signal hard and not soft - as commonly believed. The smooth tone comes from the topology (design) of the amplifier and not from the power tube distortion. We can measure the harmonic distortion of power tubes, but it is pointless because it will be the same as an op amp with a LED clipping at the output.

Another widespread myth that vacuum tubes clip the signal more asymmetrical than transistors (BJTs). In fact the opposite is true! A typical class A transistor stage clip the signal more asymmetrical due to the larger bias shift, than a typical common cathode tube stage (even if they are biased to mid). Just look at the fuzz pedals and what they do with the guitar signal. Actually, designing a simple transistor gain stage with symmetrical clipping is a real challenge without using diodes.

And now here comes my favourite myth: asymmetrical clipping generates even-order harmonics, symmetrical clipping generates odd-order harmonics. Why is it a fallacy? Because, harmonic distortion analysis is valid only for sine waves, but not for complex musical signals. The guitar signal itself contains both even-order AND odd-order harmonics, so it does not make sense to add even order harmonics to it... What is important that asymmetrical clipping have different intermodulation distortion characteristics (louder fundamental, less high frequency content), but that's beyond the scope of this article.

Some facts about tube amps and "tube sound"

Good distorted guitar sound is not connected directly to components or technologies (tubes, transistors, op amps...). It is about how the guitar signal is filtered before the distortion and after the distortion.

Tube power amplifiers have a hidden EQ (extra bass and presence) which is caused by the speaker's impedance curve and the relative high output resistance of the power amplifier. This has to be included in the model otherwise the sound will be too flat. The current feedback is a simple solution to emulating the non even response of a tube power amp.

Frequency response of a tube power amp with speaker load - tube versus solid state

The above response (transfer function) is modified by the distortion of the speaker, the output transformer and the power tubes. E.g. speaker distortion (cone excursion generated distortion) and output transformer distortion reduce the amplitude of the resonance peak. Power tube saturation flattens the overall response. This response changes can be measured or simulated directly too.

The real difference between the bluesy vintage tone and the modern "scooped" rock tone come from the position of the tone stack. In non-master volume amps (Vox ACs, Fender Tweeds, Marshall Super Leads, JTMs) the tone stack comes before the main distortion stage and not after as in modern amps. But this is basically again a filtering issue not a tubes versus transistors question.

ADDED (11-09-2018): There is no question about that asymmetrical distortion is characteristics of tube amp sound, but the amount of asymmetry varies greatly with both the amplifier design and the amplitude of the input signal (and even with the frequency of the signal!). In classic 50 Watt and 100 Watt Marshalls the most asymmetrically clipping stage is the phase inverter: the duty cycle of a clipped sine wave can be as high as 60%. This is much higher asymmetry that occurs in 12AX7/ECC83 preamps with normal bias, where the maximum value of the duty cycle is about 55%. But when a vintage Marshall fully cranked, the distortion will become less asymmetrical due to preamp distortion. And there are amplifiers where the phase inverter distortion is nearly symmetrical: e.g. Vox ACs and clones.

So that preamps are not left out, the famous JCM800 2203/2204 preamp has nearly symmetrical distortion, in spite of the fact that the second stage is rather cold biased.

End notes

If someone asked me why tube guitar amps sound better than solid state amps my possible answer would be the following. Professional tube guitar amps are designed for professional musicians while solid state guitar amps with tube emulation are designed for the mass market. The majority of solid state amps are intentionally "under-designed", so the differences are hidden in the design and not in the technology used.

This article reflects my point of view, which is based on my experience in upgrading amps and pedals, measurements, studies of amp schematics, tube data and realistic SPICE simulations of guitar amps that made up realistic (tested) tube models and realistic speaker impedance models. Amp design books (and sites) may give us a good electronic background on this subject, but their conclusion is almost always questionable or missing...

Csaba Horvath

Facebook    Google

Complete list of articles and software tools